Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Atmospheric Forcing Dominates the Interannual Variability of Convection Strength in the Irminger SeaAbstract Transformation of light to dense waters by atmospheric cooling is key to the Atlantic Meridional Overturning Circulation in the Subpolar Gyre. Convection in the center of the Irminger Gyre contributes to the formation of the densest waters east of Greenland. We present a 19‐year (2002–2020) weekly time series of hydrography and convection in the central Irminger Sea based on (bi‐)daily mooring profiles supplemented with Argo profiles. A 70‐year annual time series of shipboard hydrography shows that this mooring period is representative of longer‐term variability. The depth of convection varies strongly from winter to winter (288–1,500 dbar), with a mean March mixed layer depth (MLD) of 470 dbar and a mean maximum density reached of 27.70 ± 0.05 kg m−3. The densification of the water column by local convection directly impacts the sea surface height in the center of the Irminger Gyre and thus large‐scale circulation patterns. Both the observations and a Price‐Weller‐Pinkel mixed layer model analysis show that the main cause of interannual variability in MLD is the strength of the winter atmospheric surface forcing. Its role is three times as important as that of the strength of the maximum stratification in the preceding summer. Strong stratification as a result of a fresh surface anomaly similar to the one observed in 2010 can weaken convection by approximately 170 m on average, but changes in surface forcing will need to be taken into account as well when considering the evolution of Irminger Sea convection under climate change.more » « less
-
null (Ed.)Abstract The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere–ocean research program investigating climate processes in the source region of the densest waters of the Atlantic meridional overturning circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region, including a research vessel, a research aircraft, moorings, sea gliders, floats, and a meteorological buoy. A remarkable feature of the field campaign was the highly coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean, and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the life cycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere–ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modeling activities underway.more » « less
An official website of the United States government
